

extCZIP®-PRO protection relay

digital protection, automation, measurements, control, registration and communication

System CZIP®

digital protection, automation, measurements, control, registration and communication

extCZIP®-PRO digital protection relays for medium-voltage switchgear and extCZIP®-2R PRO ATS automation are new hardware versions of CZIP® system devices. extCZIP®-PRO series controllers feature extensive flexibility in the choice of available input, output and communication ports.

CZIP® system hardware is 100% Polish product, developed by polish constructors, in collaboration with Institute of Power Engineering at the Poznan University of Technology. Polish technical ideas and long-term experience with the protections segment mean a very good understanding of the needs and close collaboration with local Polish power grid operators. Product development in collaboration with Polish science guarantees application of state-of-the-art and unique solutions.

- extCZIP®-PRO extended version of the digital protection relay for MV switchgear in professional and industrial power engineering
- extCZIP®-2R PRO ATS (automatic transfer switch) hardware for MV switchgears
- CZIP®-Set utility software for all CZIP® system devices, including extCZIP®-PRO

Unique protection by CZIP® system

- under-impedance protection against interfacial short-circuits NEW !!!
- high-resistance earth fault detection (up to 8 k Ω),
- selective earth fault protection in earthing transformer bay and earth circuit.

extCZIP®-PRO protection relay for power industry

- software for all switchgear bays in a single device,
- ATS with extCZIP®-2R PRO,
- predefined switchgear bay settings,
- support for programmable logic,
- 7"TFT colour LCD screen, 800x480, featuring a touch panel,
- presentation of bay synoptic block diagram with representation of switch states,
- control of switches from synoptic screen and from tele-mechanics (up to 6 switches),
- presentation of recorded events, measured values and states of outputs and inputs,
- 28, 42 or 56 opto-isolated binary inputs,
- 20, 30 or 40 relay outputs,
- 14 two-colour programmable LEDs, with description on the screen,
- ON and OFF buttons to control the field circuit breaker using device keyboard,
- signaling LEDs: TRIP- circuit breaking trip, LRC- lock remote control, BF- bay fail
- 512 MB of internal memory to record samples of error log, event log, power measurements,
- time synchronisation via Ethernet using SNTP,
- independent communication interfaces: USB, 2 x RS-485, Ethernet 10/100 BASE-TX (optional fibre optic port and CAN-BUS/RS-485),
- communication protocols: DNP 3.0, IEC 60870-5-103 and 104, IEC 61850 Modbus® ASCII / RTU (optional PPM2 protocol on CAN-BUS/RS-485 port),
- 2-bit monitoring of the status of all connectors.

Protections	L	Е	Z	T	С	K	Р	Х	U	S	Н	R
Three-step overcurrent protection against interfacial short-circuit effect	•1	•1	•1									
Directional interlock to overcurrent protection for each of the steps	•	•	•									
Current asymmetry criterion based on opposite current component	•	•	•	•		•	•	•				
Instantaneous protection against short-circuit effects	•	•	•	•	•	•	•	•		•	•	
Under-impedance protection against the effects of phase-to-phase short circuits												
Zero-sequence current earth fault protection	•	•		•						•	•	
Zero voltage protection as inrush element for other protections												
Zero voltage protection as stand-alone criterion				•								
Zero-sequence current earth fault protection in neutral point grounding circuit												
Admittance based earth fault protection	•	•	•									
Comparatively admittance based earth fault protection	•	•	•									
Conductance based earth fault protection (directional and non-directional)	•4	•4	•4							•2		
Susceptance based earth fault protection, directional	•	•	•									
Over-frequency protection		•3	•3									
Under-frequency protection		•3	•3						•			
df/dt protection		•3	•3						•			
Overcurrent element of busbar protection interlock	•	•	•		•	•	•	•	•			
Directional interlock to overcurrent element of busbar protection interlocking	•	•	•									
Overcurrent element combined with busbar protection										•		
Busbar protection decision element			•	•								
Selective protection against effects of earth faults in grounding transformer and grounding circuit							•	•				
Overvoltage protection		•3	•3	•	•							
Under-voltage protection		•3	•3									
Overcurrent protection against overload effects				•	•						•	
Overcurrent time-delayed protection against interfacial short-circuit effects					•							
Overcurrent protection against internal short circuits effects					•							
Phase overvoltage protection (criterion: wire voltages)									•			
Phase under-voltage protection (criterion: wire voltages)									•			
Overcurrent-logic busbar protection			•	•						•		
Overcurrent protection against internal interfacial short-circuit effects						•	•	•			•	
Automation protection	L	Е	Z	Т	C	K	Р	Х	U	S	Н	R
Auto-reclosing (AR)	•	٠	•									
Circuit-Breaker Failure Protection				•						•		
Capacitor Bank controller				٠								
Capacitor bay switch control (clock)					•							
Under Frequency Load Shedding (UFLS): 3 - step									٠			
AR/UFLS									•			
In-phase component enforcement automation with controller						٠						
Resistor controller							•					
Other	L	E	Z	T	C	K	Р	Х	U	S	Н	R
extCZIP®-PRO in combination with Load Shedding (LS) and AR/LS	٠	٠	٠									
extCZIP®-PRO in combination with circuit-breaker failure protection	•	•	•		•	•	٠	٠			•	
extCZIP®-PRO in combination with Automatic Transfer Switch (ATS)			٠	٠			•	٠		٠	٠	
ATS function in power reserve and spinning reserve systems												•
extCZIP®-PRO in combination with gas flow protection				٠		٠	٠	٠				
extCZIP®-PRO in combination with external residual current protection											•	
Interlock of overcurrent protection tripping from the second harmonic	٠	٠	٠									
Synchronism test function when switching on lines with local generation		•5	•5									

¹Optional settings change after operational first, second or third step switching. ²Non-directional. ⁴With built-in adaptive algorithm to support effective detection of high-resistance earth faults.

³With independent AR. ⁵Optional function.

Intended use of extCZIP®-PRO - substation bays

- feeder bay without power generation
- feeder bay with power generation (including wind power)
- z supply line bay
- MV side of the 110 kV/MV transformer
- capacitor bank
- auxiliary supply in compensated networks (including with isolated neutral point)
- auxiliary supply in networks with neutral earthing resistors
- auxiliary supply in networks with choke/resistor parallel system
- voltage measurement bay
- S bus coupler bay
- 110 kV side of the 110 kV MV transformer

Intended use of extCZIP®-2R PRO

ATS (automatic transfer switch) hardware

Technical specifications

Phase current	input circuits					
Rated current I _n		5 A or 1 A				
Measurement rai	nge	0192 A				
Measurement error	0 A > 0.3550 A < 192 A	< 10% < 1.5% < 10%				
Rated frequency	f_n	50 Hz				
Power consumpt	< 0.5 VA					
Phase voltage	input circuits					
Rated voltage U _n		100 V				
Measurement range		0130 V				
Measurement error in measurement range		< 1.5%				
Rated frequency f _n		50 Hz				
Power consumpt	< 0.4 VA					
Zero sequence	current input circuits					
Rated current I _{0n}		0.5 A				
Measurement rai	nge	05 A				
Measurement er	ror 0.023.5 A	< 1.5%				
Rated frequency f _n		50 Hz				
Power consumption at I=I _{0n}		< 0.4 VA				
Zero voltage ir	nput circuits					
Rated voltage U ₀	ln	100 V				
Measurement range		0130 V				
Measurement error in measurement range		< 1.5%				
Rated frequency f _n		50 Hz				
Power consumption at U=U _{0n}		< 0.4 VA				

Bistable input circ	uits						
Rated input voltage		24 V	220 V				
Input voltage range		1732 V	88253 V				
Current consumption	ı	< 0.25 mA	< 3 mA				
Relay output circu	its						
Rated voltage		220 V	24 V				
Continuous current-c	arrying capacity	5 A					
Inductive circuit oper	Inductive circuit opening						
• 220 V DC, L/R = 40 m	ns	0.1 A					
• 220 V AC, $\cos \phi = 0.4$	1	2 A					
Circuits with break	er						
Rated voltage		220 V	24 V				
Continuous current-c	arrying capacity	8 A			city 8 A		
Inductive circuit opening							
• 220 V DC, L/R = 40 m	ns	1.2 A / 300 cycles					
Time - switching of in	npulse	min. 0.1 s					
Time - switching on ir	mpulse	min. 0.1 s					
Other data							
Power supply							
 rated supply voltage 	220 V DC 90 220 300 V	230 V AC 85 230 265 V	24 V DC 19 24 65 V				
• power consumption		< 20 W					
Environmental conditions							
• ambient temperature		-10+55°C					
• storage temperature	2	-20+70°C					
• altitude above sea le	evel	≤ 2000 m					
• relative humidity		595%					
Weight		6 kg					
IEC degree of protect	ion	IP 50					

Dimensions

®-Set

- software supplied with extCZIP®-PRO perfect engineering tool to assist the user in settings, configuration of all available parameters and reading of configuration data, measurement data and event logger data in real time,
- the software also includes a module to read samples stored in the error log and conduct comprehensive evaluation of error data,
- the tool features a programmable logic editor to customise extCZIP®-PRO to user's individual solutions and needs,
- the software communicates with extCZIP®-PRO devices via RS-485 serial ports, fibre optic cable, USB, Ethernet and CAN-BUS.